The WSS scalar complex valued random process \((X(t), t \in \mathbb{R}) \) is amplitude modulated onto a carrier to produce the signal
\[
Z(t) = \sqrt{2} X(t) \cos(2\pi f_c t + \Theta),
\]
where \(\Theta \) is uniformly distributed on \([0; 2\pi]\) and is independent of the process \((X(t), t \in \mathbb{R}) \).

(a) Demonstrate that \((Z(t), t \in \mathbb{R}) \) is WSS.

(b) Derive an expression for the autocorrelation function \(R_{ZZ}(\tau) \) in terms of the autocorrelation function \(R_{XX}(\tau) \).

(c) Derive an expression of the power spectral density \(S_{ZZ}(\omega) \) in terms of \(S_{XX}(\omega) \). Give a physical interpretation for the derived formula.

Suppose now to observe the process \((Y(t), t \in \mathbb{R}) \) given by
\[
Y(t) = \alpha Z(t) + \beta Z(t - T) + W(t),
\]
where \(\alpha, \beta, \) and \(T \) are real-valued constants, and \((W(t), t \in \mathbb{R}) \) is a white Gaussian noise with power spectral density \(N_0 \) and is independent of the process \((Z(t), t \in \mathbb{R}) \).

(d) Derive an expression for the power spectral density \(S_{YY}(\omega) \) in terms of \(S_{ZZ}(\omega) \).

(e) What is the frequency response \(H(\omega) \) of the linear filter whose output \((\hat{Z}(t), t \in \mathbb{R}) \) is the LLSE of \((Z(t), t \in \mathbb{R}) \)?