## UCSD ECE 35 Prerequisite Test Solutions

1. The product of a $2 \times 2$ matrix with a 2 x 1 vector is defined as

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
a x_{1}+b x_{2} \\
c x_{1}+d x_{2}
\end{array}\right]
$$

We can use this to write the system of equations

$$
\begin{aligned}
& y_{1}=a x_{1}+b x_{2} \\
& y_{2}=c x_{1}+d x_{2}
\end{aligned}
$$

as a matrix equation:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Based on this, we can express our system of equations as

$$
\left[\begin{array}{ll}
1 & 4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

To solve for $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ we need to multiply both sides of this equation by the inverse of $\left[\begin{array}{ll}1 & 4 \\ 4 & 4\end{array}\right]$. The inverse of a 2 x 2 matrix is given by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

So

$$
\left[\begin{array}{ll}
1 & 4 \\
4 & 4
\end{array}\right]^{-1}=\frac{1}{1(4)-4(4)}\left[\begin{array}{cc}
4 & -4 \\
-4 & 1
\end{array}\right]=\frac{-1}{12}\left[\begin{array}{cc}
4 & -4 \\
-4 & 1
\end{array}\right]
$$

Now we find $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 4 \\
4 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\frac{-1}{12}\left[\begin{array}{cc}
4 & -4 \\
-4 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\left[\begin{array}{c}
1 \\
.25
\end{array}\right]
$$

So we find $x_{1}=1$ and $x_{2}=.25$
2. We begin by adding the first equation to the second equation:

$$
\begin{array}{r}
-3 x_{1}-2 x_{2}+7 x_{3}=5 \\
+ \\
3 x_{1}+3 x_{2}-4 x_{3}=7 \\
\hline x_{2}+3 x_{3}=12
\end{array}
$$

Next, we solve this equation for $x_{2}$.

$$
x_{2}=12-3 x_{3}
$$

Now, we substitute this equation into the third equation.

$$
\begin{array}{r}
4 x_{1}+2\left(12-3 x_{3}\right)+6 x_{3}=10 \\
4 x_{1}+24-6 x_{3}+6 x_{3}=20 \\
4 x_{1}=-4
\end{array}
$$

Thus

$$
x_{1}=-1
$$

Substituting this value for $x_{1}$ into the first equation gives

$$
\begin{array}{r}
3-2 x_{2}+7 x_{3}=5 \\
-2 x_{2}+7 x_{3}=2
\end{array}
$$

Solving this for $x_{2}$ gives

$$
x_{2}=\frac{7}{2} x_{3}-1
$$

Now we plug in this equation for $x_{2}$ and $x_{1}=1$ into the second equation and solve for $x_{3}$ :

$$
\begin{aligned}
-3+3\left(\frac{7}{2} x_{3}-1\right)-4 x_{3} & =7 \\
\frac{21}{2} x_{3}-4 x_{3} & =13 \\
\frac{13}{2} x_{3} & =13 \\
x_{3} & =2
\end{aligned}
$$

Lastly, we plug $x_{3}=2$ into $x_{2}=\frac{7}{2} x_{3}-1$ :

$$
\begin{array}{r}
x_{2}=\frac{7}{2} * 2-1 \\
x_{2}=6
\end{array}
$$

Therefore $x_{1}=-1, x_{2}=6$, and $x_{3}=2$.
Alternatively, we can solve this problem using the matrix approach developed in exercise 2 :

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-3 & -2 & 7 \\
3 & 3 & -4 \\
4 & 2 & 6
\end{array}\right]^{-1}\left[\begin{array}{c}
4 \\
7 \\
20
\end{array}\right]=\left[\begin{array}{c}
-1 \\
6 \\
2
\end{array}\right]
$$

The downside to this approach is that calculating the inverse of a $3 x 3$ matrix is often quite difficult. However, in situations when a calculator is allowed, this approach is often much simpler than solving a system by hand.
3. The integral of $y(t)$ from $-\infty$ to $\infty$ is the total area under the curve. Since $y(t)=0$ outside of $[-1,1]$, the integral is just the area of the triangle.

$$
\int_{-\infty}^{\infty} y(t) d t=\frac{1}{2} * 2 * 1=1
$$

4. (a)

$$
\frac{d f(t)}{d t}=2 a t+b
$$

(b)

$$
\begin{array}{r}
\int_{t_{1}}^{t_{2}} f(t) d t=\frac{a}{3} t^{3}+\frac{b}{2} t^{2}+\left.c t\right|_{t_{1}} ^{t_{2}} \\
=\frac{a}{3} t_{2}^{3}+\frac{b}{2} t_{2}^{2}+c t_{2}-\frac{a}{3} t_{1}^{3}-\frac{b}{2} t_{1}^{2}-c t_{1} \\
= \\
\frac{a}{3}\left(t_{2}^{3}-t_{1}^{3}\right)+\frac{b}{2}\left(t_{2}^{2}-t_{1}^{2}\right)+c\left(t_{2}-t_{1}\right)
\end{array}
$$

5. (a) To find $I(t)$, we plug $\frac{d V(t)}{d t}$ into the equation.

$$
\frac{d V(t)}{d t}=\omega * \cos (\omega t)
$$

Therefore

$$
I(t)=C * \omega * \cos (\omega t)
$$

(b) To find $I(t)$, we plug $V(t)$ into the equation.

$$
\frac{\cos (\omega t)}{L}=\frac{d I(t)}{d t}
$$

Integrating both sides with respect to $t$ we find

$$
I(t)=\frac{1}{L} \int \cos (\omega t) d t=\frac{1}{L * \omega} \sin (\omega t)+c
$$

6. A complex number $z$ can be written in rectangular form as $z=a+j b$ or in phasor form as $z=|z| \angle \theta$. To convert between these different forms, we have the relationships:

$$
\begin{aligned}
a & =|z| \cos \theta \\
b & =|z| \sin \theta
\end{aligned}
$$

and

$$
\begin{array}{r}
|z|=\sqrt{a^{2}+b^{2}} \\
\tan (\theta)=\frac{b}{a}
\end{array}
$$

So we have:
(a) $|z|=\sqrt{4^{2}+4^{2}}=4 \sqrt{2}$ and $\theta=45^{\circ}$
(b) $|z|=\sqrt{3^{2}+0^{2}}=3$ and $\theta=0^{\circ}$
(c) $|z|=\sqrt{0^{2}+(-2)^{2}}=2$ and $\theta=270^{\circ}$
(d) $|z|=\sqrt{(-12)^{2}+3^{2}}=3 \sqrt{17}$ and $\theta=165.96^{\circ}$
7. It is usually easier to add/subtract complex numbers in rectangular form and to multiply/divide them in phasor form. For complex numbers $z_{1}=a+j b=\left|z_{1}\right| \angle \theta_{1}$ and $z_{2}=c+j d=\left|z_{2}\right| \angle \theta_{2}$, we have:

$$
\begin{array}{r}
z_{1}+z_{2}=a+j b+c+j d=(a+c)+j(b+d) \\
z_{1}-z_{2}=a+j b-(c+j d)=(a-c)+j(b-d) \\
z_{1} * z_{2}=\left|z_{1}\right|\left|z_{2}\right| \angle\left(\theta_{1}+\theta_{2}\right) \\
\frac{z_{1}}{z_{1}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \angle\left(\theta_{1}-\theta_{2}\right)
\end{array}
$$

Also, for a complex number $z=a+j b=|z| \angle \theta$, the complex conjugate $z^{*}$ is given by

$$
z^{*}=a-j b=|z| \angle-\theta
$$

So we have:
(a) $(4+3 j)-(2-6 j)=2+9 j=\sqrt{85} \angle 77.47^{\circ}$
(b) $(1+2 j)(4+6 j)=\left(\sqrt{5} \angle 63.4^{\circ}\right)\left(2 \sqrt{13} \angle 56.3^{\circ}\right)=2 \sqrt{65} \angle 119.7^{\circ}$
(c) $(1+2 j)(4-6 j)=\left(\sqrt{5} \angle 63.4^{\circ}\right)\left(2 \sqrt{13} \angle-56.3^{\circ}\right)=2 \sqrt{65} \angle 7.1^{\circ}$
(d) $\frac{(2+4 j)}{(6-7 j)}=\frac{2 \sqrt{5} \angle 63.43^{\circ}}{\sqrt{85} \angle-49.4^{\circ}}=\frac{2}{\sqrt{17}} \angle 112.83^{\circ}$
(e) $\frac{(1+2 j)+(3+4 j)}{(2-3 j)-4}=\frac{4+6 j}{-2-3 j}=\frac{2(2+3 j)}{-1(2+3 j)}=-2=2 \angle 180^{\circ}$
(f) $((1+2 j)(2+3 j))^{*}=\left(\left(\sqrt{5} \angle 63.4^{\circ}\right)\left(\sqrt{13} \angle 56.3^{\circ}\right)\right)^{*}=\left(\sqrt{65} \angle 119.7^{\circ}\right)^{*}$ $=\sqrt{65} \angle-119.7^{\circ}$
8. (a) $\int \cos (t) d t=\sin (t)+c$
(b) $\int_{0}^{t} \cos (t) d t=\sin (t)-\sin (0)=\sin (t)$
(c) $\int \frac{5}{x} d x=5 \int \frac{1}{x}=5 \ln (|x|)+c$
(d) $\int e^{x} d x=e^{x}+c$
(e) $\int e^{j x} d x=\frac{e^{j x}}{j}+c=-j e^{j x}+c$
(f) For this integral, we need to first notice that the answer is a function of $t$. Also,
$x(\tau) e^{j \tau}=\left\{\begin{array}{cc}e^{j \tau} & -3<\tau<3 \\ 0 & \text { else }\end{array}\right.$
So from $-\infty<t<-3$, we have $\int_{-\infty}^{t} 0 d \tau=0$
From $-3<t<3$ we have $\int_{-\infty}^{t} x(\tau) e^{j \tau} d \tau=\int_{-3}^{t} e^{j \tau} d \tau=\frac{e^{j t}-e^{-j 3}}{j}=-j\left(e^{j t}-e^{-j 3}\right)$
Lastly from $3<t<\infty$ we have $\int_{-\infty}^{t} x(\tau) e^{j \tau} d \tau=\int_{-3}^{3} e^{j \tau} d \tau=-j\left(e^{3 j}-e^{-3 j}\right)$
Therefore our final solution is $\int_{-\infty}^{t} x(\tau) e^{j \tau} d \tau=\left\{\begin{array}{cc}0 & -\infty<t<-3 \\ -j\left(e^{j t}-e^{-j 3}\right) & -3<t<3 \\ -j\left(e^{3 j}-e^{-3 j}\right) & 3<t<\infty\end{array}\right.$
(g) $\int_{0}^{y} x e^{-x^{2}} d x=\left.\frac{-e^{-x^{2}}}{2}\right|_{0} ^{y}=\frac{-e^{-y^{2}}}{2}-\frac{-1}{2}=\frac{1-e^{-y^{2}}}{2}$
(h) $\int_{-\frac{y}{2}}^{\frac{y}{2}}(2 x+4) d x=x^{2}+\left.4 x\right|_{\frac{-y}{2}} ^{\frac{y}{2}}=\frac{y^{2}}{4}+2 y-\frac{y^{2}}{4}-(-2 y)=4 y$

