## UCSD ECE 35 Prerequisite Test Solutions

1. The product of a 2x2 matrix with a 2x1 vector is defined as

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix}$$

We can use this to write the system of equations

$$y_1 = ax_1 + bx_2$$
$$y_2 = cx_1 + dx_2$$

as a matrix equation:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Based on this, we can express our system of equations as

$$\begin{bmatrix} 1 & 4 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

To solve for  $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$  we need to multiply both sides of this equation by the inverse of  $\begin{bmatrix} 1 & 4 \\ 4 & 4 \end{bmatrix}$ . The inverse of a 2x2 matrix is given by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

So

$$\begin{bmatrix} 1 & 4 \\ 4 & 4 \end{bmatrix}^{-1} = \frac{1}{1(4) - 4(4)} \begin{bmatrix} 4 & -4 \\ -4 & 1 \end{bmatrix} = \frac{-1}{12} \begin{bmatrix} 4 & -4 \\ -4 & 1 \end{bmatrix}$$

Now we find  $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$  as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 4 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \frac{-1}{12} \begin{bmatrix} 4 & -4 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ .25 \end{bmatrix}$$

So we find  $x_1 = 1$  and  $x_2 = .25$ 

2. We begin by adding the first equation to the second equation:

$$-3x_{1} - 2x_{2} + 7x_{3} = 5$$

$$+$$

$$3x_{1} + 3x_{2} - 4x_{3} = 7$$

$$-$$

$$x_{2} + 3x_{3} = 12$$

Next, we solve this equation for  $x_2$ .

$$x_2 = 12 - 3x_3$$

Now, we substitute this equation into the third equation.

$$4x_1 + 2(12 - 3x_3) + 6x_3 = 10$$
$$4x_1 + 24 - 6x_3 + 6x_3 = 20$$
$$4x_1 = -4$$

Thus

$$x_1 = -1$$

Substituting this value for  $x_1$  into the first equation gives

$$3 - 2x_2 + 7x_3 = 5$$
$$-2x_2 + 7x_3 = 2$$

Solving this for  $x_2$  gives

$$x_2 = \frac{7}{2}x_3 - 1$$

Now we plug in this equation for  $x_2$  and  $x_1 = 1$  into the second equation and solve for  $x_3$ :

$$-3 + 3(\frac{7}{2}x_3 - 1) - 4x_3 = 7$$
$$\frac{21}{2}x_3 - 4x_3 = 13$$
$$\frac{13}{2}x_3 = 13$$
$$x_3 = 2$$

Lastly, we plug  $x_3 = 2$  into  $x_2 = \frac{7}{2}x_3 - 1$ :

$$x_2 = \frac{7}{2} * 2 - 1$$
$$x_2 = 6$$

Therefore  $x_1 = -1$ ,  $x_2 = 6$ , and  $x_3 = 2$ .

Alternatively, we can solve this problem using the matrix approach developed in exercise 2:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 & -2 & 7 \\ 3 & 3 & -4 \\ 4 & 2 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 4 \\ 7 \\ 20 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \\ 2 \end{bmatrix}$$

The downside to this approach is that calculating the inverse of a 3x3 matrix is often quite difficult. However, in situations when a calculator is allowed, this approach is often much simpler than solving a system by hand.

3. The integral of y(t) from  $-\infty$  to  $\infty$  is the total area under the curve. Since y(t) = 0 outside of [-1,1], the integral is just the area of the triangle.

$$\int_{-\infty}^{\infty} y(t)dt = \frac{1}{2} * 2 * 1 = 1$$

4. (a)

$$\frac{df(t)}{dt} = 2at + b$$

(b)

$$\int_{t_1}^{t_2} f(t)dt = \frac{a}{3}t^3 + \frac{b}{2}t^2 + ct\Big|_{t_1}^{t_2}$$

$$= \frac{a}{3}t_2^3 + \frac{b}{2}t_2^2 + ct_2 - \frac{a}{3}t_1^3 - \frac{b}{2}t_1^2 - ct_1$$

$$= \frac{a}{3}(t_2^3 - t_1^3) + \frac{b}{2}(t_2^2 - t_1^2) + c(t_2 - t_1)$$

5. (a) To find I(t), we plug  $\frac{dV(t)}{dt}$  into the equation.

$$\frac{dV(t)}{dt} = \omega * cos(\omega t)$$

Therefore

$$I(t) = C * \omega * cos(\omega t)$$

(b) To find I(t), we plug V(t) into the equation.

$$\frac{\cos(\omega t)}{L} = \frac{dI(t)}{dt}$$

Integrating both sides with respect to t we find

$$I(t) = \frac{1}{L} \int cos(\omega t)dt = \frac{1}{L*\omega} sin(\omega t) + c$$

6. A complex number z can be written in rectangular form as z = a + jb or in phasor form as  $z = |z| \angle \theta$ . To convert between these different forms, we have the relationships:

$$a = |z| \cos \theta$$
$$b = |z| \sin \theta$$

and

$$|z| = \sqrt{a^2 + b^2}$$
$$tan(\theta) = \frac{b}{a}$$

So we have:

(a) 
$$|z| = \sqrt{4^2 + 4^2} = 4\sqrt{2}$$
 and  $\theta = 45^{\circ}$ 

(b) 
$$|z| = \sqrt{3^2 + 0^2} = 3$$
 and  $\theta = 0^\circ$ 

(c) 
$$|z| = \sqrt{0^2 + (-2)^2} = 2$$
 and  $\theta = 270^\circ$ 

(d) 
$$|z| = \sqrt{(-12)^2 + 3^2} = 3\sqrt{17}$$
 and  $\theta = 165.96^{\circ}$ 

7. It is usually easier to add/subtract complex numbers in rectangular form and to multiply/divide them in phasor form. For complex numbers  $z_1 = a + jb = |z_1| \angle \theta_1$  and  $z_2 = c + jd = |z_2| \angle \theta_2$ , we have:

$$z_1 + z_2 = a + jb + c + jd = (a + c) + j(b + d)$$

$$z_1 - z_2 = a + jb - (c + jd) = (a - c) + j(b - d)$$

$$z_1 * z_2 = |z_1||z_2|\angle(\theta_1 + \theta_2)$$

$$\frac{z_1}{z_1} = \frac{|z_1|}{|z_2|}\angle(\theta_1 - \theta_2)$$

Also, for a complex number  $z = a + jb = |z| \angle \theta$ , the complex conjugate  $z^*$  is given by

$$z^* = a - jb = |z| \angle -\theta$$

So we have:

(a) 
$$(4+3j) - (2-6j) = 2+9j = \sqrt{85} \angle 77.47^{\circ}$$

(b) 
$$(1+2i)(4+6i) = (\sqrt{5}\angle 63.4^{\circ})(2\sqrt{13}\angle 56.3^{\circ}) = 2\sqrt{65}\angle 119.7^{\circ}$$

(c) 
$$(1+2j)(4-6j) = (\sqrt{5}\angle 63.4^{\circ})(2\sqrt{13}\angle -56.3^{\circ}) = 2\sqrt{65}\angle 7.1^{\circ}$$

(d) 
$$\frac{(2+4j)}{(6-7j)} = \frac{2\sqrt{5}\angle 63.43^{\circ}}{\sqrt{85}\angle -49.4^{\circ}} = \frac{2}{\sqrt{17}}\angle 112.83^{\circ}$$

(e) 
$$\frac{(1+2j)+(3+4j)}{(2-3j)-4} = \frac{4+6j}{-2-3j} = \frac{2(2+3j)}{-1(2+3j)} = -2 = 2\angle 180^{\circ}$$

(f) 
$$((1+2j)(2+3j))^* = ((\sqrt{5}\angle 63.4^\circ)(\sqrt{13}\angle 56.3^\circ))^* = (\sqrt{65}\angle 119.7^\circ)^* = \sqrt{65}\angle -119.7^\circ$$

8. (a) 
$$\int \cos(t)dt = \sin(t) + c$$

(b) 
$$\int_0^t \cos(t)dt = \sin(t) - \sin(0) = \sin(t)$$

(c) 
$$\int \frac{5}{x} dx = 5 \int \frac{1}{x} = 5 \ln(|x|) + c$$

(d) 
$$\int e^x dx = e^x + c$$

(e) 
$$\int e^{jx} dx = \frac{e^{jx}}{j} + c = -je^{jx} + c$$

(f) For this integral, we need to first notice that the answer is a function of t. Also,

$$x(\tau)e^{j\tau} = \begin{cases} e^{j\tau} & -3 < \tau < 3\\ 0 & else \end{cases}$$

So from  $-\infty < t < -3$ , we have  $\int_{-\infty}^{t} 0 d\tau = 0$ 

From 
$$-3 < t < 3$$
 we have  $\int_{-\infty}^{t} x(\tau)e^{j\tau}d\tau = \int_{-3}^{t} e^{j\tau}d\tau = \frac{e^{j\tau}-e^{-j3}}{j} = -j(e^{jt}-e^{-j3})$ 

Lastly from 
$$3 < t < \infty$$
 we have  $\int_{-\infty}^t x(\tau)e^{j\tau}d\tau = \int_{-3}^3 e^{j\tau}d\tau = -j(e^{3j} - e^{-3j})$ 

Therefore our final solution is 
$$\int_{-\infty}^{t} x(\tau)e^{j\tau}d\tau = \begin{cases} 0 & -\infty < t < -3 \\ -j(e^{jt} - e^{-j3}) & -3 < t < 3 \\ -j(e^{3j} - e^{-3j}) & 3 < t < \infty \end{cases}$$

(g) 
$$\int_0^y xe^{-x^2} dx = \frac{-e^{-x^2}}{2} \Big|_0^y = \frac{-e^{-y^2}}{2} - \frac{-1}{2} = \frac{1 - e^{-y^2}}{2}$$

(h) 
$$\int_{-\frac{y}{2}}^{\frac{y}{2}} (2x+4)dx = x^2 + 4x \Big|_{\frac{-y}{2}}^{\frac{y}{2}} = \frac{y^2}{4} + 2y - \frac{y^2}{4} - (-2y) = 4y$$