Problem 1: Optical resonators

(a) A Fabry-Perot etalon has two parallel mirrors with the same reflectivity R, the cavity spacing is d and the refractive index of the cavity is n. What is spacing between adjacent resonance frequencies? How does the width of the resonance change with increasing R?
(b) Derive the ABCD matrices of a thin lens with focal length equal to f, by considering the focusing nature of the thin lens. i.e. parallel rays intersect at the focal plane after passing through a thin lens.

Problem 2: Three- and four-level lasers

(a) Draw the energy-level diagram of an idealized three-level and four-level lasers.
(b) Explain why it is easier to achieve population inversion in a four-level laser.
(c) What wavelength photon can cause an electron to fall from a -18ev energy level to a -20ev energy level, with emission of a second photon? What is the wavelength of the second photon?

Problem 3: Electro-optic modulator

As shown in the above figure, a phase modulator. e.g. Pockels cell, placed in one branch of a Mach-Zehnder interferometer can serve as an intensity modulator. Assume the Pockels cell length is L, the voltage V is applied to the cell separated by distance d, the Pockels coefficient is r, and the operation wavelength is λ_0. Both beam-splitters are 50% beam-splitters.

(a) What is the half-wave voltage?
(b) Derive the relationship between transmittance of the modulator (I_0/I_i) and the applied voltage V.
(c) What is the condition that this device can be treated as a linear intensity modulator?