PRINT YOUR NAME ____________________________
Signature ____________________________________
Student ID Number ____________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Weight</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a)</td>
<td>15 pts</td>
<td></td>
</tr>
<tr>
<td>1 (b)</td>
<td>10 pts</td>
<td></td>
</tr>
<tr>
<td>1 (c)</td>
<td>10 pts</td>
<td></td>
</tr>
<tr>
<td>1 (d)</td>
<td>15 pts</td>
<td></td>
</tr>
<tr>
<td>1 (e)</td>
<td>15 pts</td>
<td></td>
</tr>
<tr>
<td>1 (f)</td>
<td>15 pts</td>
<td></td>
</tr>
<tr>
<td>1 (g)</td>
<td>20 pts</td>
<td></td>
</tr>
</tbody>
</table>

Useful tables are at the back of the exam.

Good luck!
Problem 1

An LTI discrete-time system with input $x[n]$ and output $y[n]$ has an input response given by

$$h[n] = 12 \left[\left(-\frac{1}{3} \right)^n - \left(-\frac{1}{2} \right)^n \right] u[n],$$

where n is an integer and

$$u[n] = \begin{cases}
1, & n \geq 0, \\
0, & n < 0,
\end{cases},$$

denotes the step function.

(a) Give an expression for the system transfer function $H(z)$.

Problem 1 (cont.)

(b) Specify poles and zeros of $H(z)$.
Problem 1 (cont.)

(c) Find the output $y[n]$ when input is $x[n] = 3^n$.
Problem 1 (cont.)

Let $H(e^{j\omega})$ denote the system frequency response, i.e., the discrete-time Fourier transform, of $h[n]$.

(d) Evaluate $\int_{0}^{2\pi} H(e^{j\omega})e^{j\omega}d\omega$ without explicitly using the expression for $H(e^{j\omega})$.
Problem 1 (cont.)

(e) Evaluate $\int_{-\pi}^{\pi} |H(e^{j\omega})|^2 d\omega$ without explicitly using the expression for $H(e^{j\omega})$.
(f) Find the output $y_s[n]$ when the input is the step functions $u[n]$.
Problem 1 (cont.)

The step response $y_s[n]$ exhibits overshoot, which is undesirable in many applications. It is proposed to compensate for the overshoot by filtering $y_s[n]$ with another LTI system, whose output $w[n]$ is given by

$$w[n] = ay_s[n] + by_s[n - 1] + cy_s[n - 2].$$

(1)

(g) Find values of the constant a, b, c, such that $w[n] = u[n - 1]$.