ECS Undergraduate

Problem #1:

An operational amplifier is used to make a feedback amplifier as shown above. Its open-loop Bode gain plot is approximated as sketched on the right side with straight lines. Assume that the second pole frequency ω_0 of the open-loop transfer function is the same as the unity-gain frequency.

1. What is the low-frequency gain of this amplifier?

$$\frac{V_o}{V_i} = \frac{90k + 10k}{10k} = 10 \text{ (20dB)}$$

2. Estimate the bandwidth of this amplifier.

$$\text{BW} = \omega_m \times \frac{1}{10} = 10^6 \text{ rad/s}$$

3. Using the same straight-line approximation, sketch the frequency response of the amplifier on the same plot, and mark important points with proper gain and frequency.

4. Approximate the phase margin of this feedback configuration.

$$\rho M = 90^\circ - \phi_m - \frac{1}{10}$$

5. Repeat the above questions 2 and 3 if the feedback resistor R_2 is bypassed using a 100pF capacitor.

$$\text{BW} = \frac{1}{90k \times 100 \text{pF}} \approx 1.1 \times 10^5 \text{ rad/s}$$
Problem #2:

A BJT amplifier is shown with the input bias voltage V_i to set the collector current. Both the input and output small signals are marked as the low-case v_i and v_o, respectively. Neglect other parameters unless specified except for the followings: $kT/q = 25mV$, $V_{BE} = 0.7V$, $V_{CESat} = 0.2V$. First assume that the emitter resistor R_E is set to 0.

1. Sketch the DC transfer function of V_o vs. V_i in the above space, and add proper voltage scales.

2. If the DC bias voltage V_i is applied to set the collector current to be $1mA$, what is the output DC voltage?

 \[V_o = 5V - 2kT/q \times 1mA = 3V \]

3. Estimate the low-frequency small-signal voltage gain v_o/v_i and the -3dB bandwidth.

 \[g_m = \frac{1mA}{25mV} = \frac{1}{25} \]

 \[\frac{v_o}{v_i} = -g_m R_L = -\frac{2kT/q}{25\Omega} = -10 \]

 \[\beta_{BW} = \frac{1}{2kT/q \times 10pF} = 5 \times 10^7 \text{ rad/s} \]

4. Estimate V_i to set the collector current to be $1mA$ if the emitter resistance R_E is $1k\Omega$.

 \[V_i = 1k\Omega \times 1mA + 0.7V = 1.7V \]

5. Repeat the above question 3 with the emitter resistance R_E set to $1k\Omega$.

 \[\frac{v_o}{v_i} = -\frac{g_m R_L}{1 + g_m R_E} = -\frac{2kT/q \times 25\Omega}{1 + \frac{kT/q}{25\Omega}} \approx -2 \]

 \[\beta_{BW} \text{ stays the same.} \]