230A problem:

For the 1-D InGaAs/InAlAs superlattice, the effective mass for InGaAs and InAlAs are denoted as \(m_1 \) and \(m_2 \), respectively.

(a) Find the general solution of the Schrödinger equation in regions I and II.
(b) Write the boundary conditions that allow us to solve the coefficients and the eigenvalues (energies) \(E \)'s. Note that in this case, the effective mass of electron in InGaAs and InAlAs is different.

230B problem:

An n-channel MOSFET has a 10 nm thick gate oxide and uniform p-type body doping of \(10^{17} \) cm\(^{-3} \). The device is 10 \(\mu \)m wide and the channel length is 1 \(\mu \)m. Assume Si, room temperature, and complete ionization.

(a) What is the inverse slope of the log subthreshold current vs. \(V_g \) curve?
(b) For a gate bias such that \(V_g - V_t = 2.5 \) V where the mobility is 400 cm\(^2\)/V·s, what is the MOSFET channel conductance, \(dI/dV \), at low drain bias voltages?
(c) How short can the channel length be reduced before onset of severe short-channel effects?