EP and EE & Society
ELECTIVES
(effective fall 2017)

Professional and technical electives are an integral part of the ECE major curriculum. They allow students course flexibility as well as the unique opportunity to tailor their major to their personal interests and professional goals.

Please note:

➔ ALL COURSES USED TO SATISFY MAJOR REQUIREMENTS MUST BE TAKEN FOR A LETTER GRADE AND RECEIVE A GRADE OF C- OR BETTER.

➔ This is a comprehensive list of courses that will count towards your electives, but it is not a guarantee that they will be offered every year/quarter or that you will be able to enroll as prerequisites must be completed prior to enrolling. Enrollment and offering of courses depend on respective departments’ schedules, prerequisites, and policies. Please follow all department policies.

➔ EP majors are required to complete 3 Technical Electives and 2 Professional Electives.

➔ EE & Society majors are required to complete 4 upper division Technical Electives only.

➔ ECE graduate classes may count towards your electives.

Be sure to scroll all the way down to see the full list of electives and read any important notes.
Professional Electives ONLY

Professional electives are acceptable courses taken in one department. Normally, these will be upper-division courses in engineering, mathematics, or physics. Students may also choose upper-division courses from other departments provided that they fit into a coherent professional program. In such cases, a lower-division prerequisite may be included in the electives. Courses other than upper-division engineering, mathematics, or physics must be justified in terms of such a program, and must be approved by the ECE department. Please keep in mind that there are courses not listed that are acceptable Professional Electives.

<table>
<thead>
<tr>
<th>BIOLOGICAL SCIENCES</th>
<th>BIOLOGICAL SCIENCES</th>
<th>BIOLOGICAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lower division and 2 upper division Biology courses OR 3 upper division Biology courses will satisfy Professional Electives.</td>
<td>BILD 1 The Cell</td>
<td>BILD 2 Multicellular Life</td>
</tr>
<tr>
<td>BILD 3 Organismic and Evolutionary Biology</td>
<td>BICD 100 Genetics</td>
<td>BIEB 140 Diversitiy</td>
</tr>
<tr>
<td>BIBC 140 Introduction to Biofuels</td>
<td>BIEB 166 Animal Behavior and Communication</td>
<td>SIPN 146 Computational Neurobiology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHEMISTRY (CHEM)</th>
<th>CHEMISTRY (CHEM)</th>
<th>CHEMISTRY (CHEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lower division and 2 upper division CHEM courses OR 3 upper division CHEM courses will satisfy Professional Electives.</td>
<td>6B General Chemistry II</td>
<td>6C General Chemistry III</td>
</tr>
<tr>
<td>140A Organic Chemistry I</td>
<td>140B Organic Chemistry II</td>
<td>140C Organic Chemistry III</td>
</tr>
<tr>
<td>143A Organic Chemistry Laboratory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COGNITIVE SCIENCE (COGS)</th>
<th>COGNITIVE SCIENCE (COGS)</th>
<th>COGNITIVE SCIENCE (COGS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any upper division COGS courses will satisfy Professional Electives ONLY</td>
<td>109 Modeling and Data Analysis</td>
<td>118A Natural Computation I</td>
</tr>
<tr>
<td>118B Natural Computation II</td>
<td>185 Advanced Machine Learning Methods</td>
<td>189 Brain Computer Interfaces</td>
</tr>
<tr>
<td>Note: Lower division COGS courses will NOT count as either professional or technical elective credit.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER SCIENCE & ENGINEERING (CSE)</th>
<th>COMPUTER SCIENCE & ENGINEERING (CSE)</th>
<th>COMPUTER SCIENCE & ENGINEERING (CSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Basic Data Structures and Object-Oriented Design</td>
<td>20 Discrete Mathematics</td>
<td>21 Mathematics for Algorithms and Systems</td>
</tr>
<tr>
<td>Note: CSE 3, 4GS, 6GS, 5A, 7, 8A-B, 11,15L, 30, 42, 80, 86, 91, 123A, 140, 140L, 141L will not count as either professional or technical elective credit.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECONOMICS (ECON)</th>
<th>ECONOMICS (ECON)</th>
<th>ECONOMICS (ECON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students must follow one of the tracks below:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: If economics is chosen for professional electives, only 1 technical elective is required for engineering physics major.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 1 and 3 followed by the courses in one of the following tracks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Macroeconomics: ECON 110A-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Monetary economics: ECON 111, and another economics upper division elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 1 and 2 followed by two courses in one of the following tracks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Public and Environmental: ECON 118, 130, 131, 132, 133, 137, 145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Labor and Human Resources: ECON 137, 139, 140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: ECON 100A can be substituted for ECON 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 1 and 100A followed by 2 courses in one of the following tracks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Microeconomics: ECON 100B-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Financial Markets: ECON 120B and 173A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Operations Research: ECON 172A-B (after taking ECE 109 and MATH 20F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Human Resources: ECON 100B and 136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: ECON 120A, and 158-159 will not be allowed as professional electives.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRICAL AND COMPUTER ENGINEERING</th>
<th>ELECTRICAL AND COMPUTER ENGINEERING</th>
<th>ELECTRICAL AND COMPUTER ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 Topics in ECE: Entrepreneurship counts towards one Professional Elective ONLY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GlobalTIES (ENG)</th>
<th>GlobalTIES (ENG)</th>
<th>GlobalTIES (ENG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 units of GlobalTIES courses will satisfy 3 Professional Electives ONLY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATHEMATICS (MATH)</th>
<th>MATHEMATICS (MATH)</th>
<th>MATHEMATICS (MATH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 History of Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Lower division Math, Math 180A-B, 183, and 186 will NOT count as either professional or technical elective credit.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANAGEMENT, RADY SCHOOL OF (MGT)</th>
<th>MANAGEMENT, RADY SCHOOL OF (MGT)</th>
<th>MANAGEMENT, RADY SCHOOL OF (MGT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lower division and 2 upper division MGT courses OR 3 upper division MGT courses</td>
<td>102 Product Marketing and Management</td>
<td>106 Sales and Sales Management</td>
</tr>
<tr>
<td>103 Product Marketing and Management</td>
<td>121A Innovation to Market A</td>
<td>121B Innovation to Market B</td>
</tr>
<tr>
<td>164 Organizational Leadership</td>
<td>166 Business Ethics and Corporate Responsibility</td>
<td>172 Business Project Management</td>
</tr>
<tr>
<td>174 Supply Chain and Operations Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Lower division MGT courses will NOT count for technical elective credit.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL STUDIES</th>
<th>SPECIAL STUDIES</th>
<th>SPECIAL STUDIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>197-199: At most, 4 units of 195-199 may be used for elective credit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>197: will count towards Professional Elective ONLY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Professional OR Technical Electives

Technical electives must be upper-division engineering, math or physics courses. EP majors: at most one lower-division course in engineering may be used but it must receive prior approval from the ECE department.

<table>
<thead>
<tr>
<th>COMPUTER SCIENCE & ENGINEERING (CSE)</th>
<th>BIOENGINEERING (BENG)</th>
<th>ECE Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Advanced Data Structures</td>
<td>The following series of courses will provide "core" preparation in bioengineering and will satisfy up to five (S) courses of the ECE elective requirements: BILD 1, BILD 2, BE 100, BE 140A-B. The Bioengineering department will guarantee admission to these courses for ECE students on a space available basis. All five courses must be completed in order to receive elective credit.</td>
<td></td>
</tr>
<tr>
<td>101 Design and Analysis of Algorithms</td>
<td>111 Advanced Digital Design Project</td>
<td></td>
</tr>
<tr>
<td>103 A Practical Introduction to Probability and Statistics</td>
<td>115 Fast Prototyping</td>
<td></td>
</tr>
<tr>
<td>105 Theory of Computability</td>
<td>118 Computer Interfacing 120 Solar System Physics</td>
<td></td>
</tr>
<tr>
<td>107 Introduction to Modern Cryptography</td>
<td>121 Energy Conversion</td>
<td></td>
</tr>
<tr>
<td>110 Software Engineering</td>
<td>123 Antenna Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>112 Advanced Software Engineering</td>
<td>125A Power Electronics I</td>
<td></td>
</tr>
<tr>
<td>118 Ubiquitous Computing</td>
<td>125B Power Electronics II</td>
<td></td>
</tr>
<tr>
<td>120 Principles of Computer Operating Systems</td>
<td>134A Microelectromechanical System Design</td>
<td></td>
</tr>
<tr>
<td>121 Operating Systems: Architecture and Implementation</td>
<td>144 Computer-Aided Design of VLSI Circuits</td>
<td></td>
</tr>
<tr>
<td>124 Networked Services</td>
<td>145 Embedded System Design Project</td>
<td></td>
</tr>
<tr>
<td>125 Software System Design and Implementation</td>
<td>148 Advanced Processor Architecture Design Project</td>
<td></td>
</tr>
<tr>
<td>127 Introduction to Computer Security</td>
<td>150 Intro to Artificial Intelligence: Search & Reasoning</td>
<td></td>
</tr>
<tr>
<td>130 Programming Languages: Principles and Paradigms</td>
<td>151 Intro to Artificial Intelligence: Statistical Approaches</td>
<td></td>
</tr>
<tr>
<td>131 Compiler Construction</td>
<td>152 Introduction to Computer Vision</td>
<td></td>
</tr>
<tr>
<td>132A Database System Principles</td>
<td>153 Cognitive Modeling</td>
<td></td>
</tr>
<tr>
<td>132B Database Systems Applications</td>
<td>154 Introduction to Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>134B Web Client Languages</td>
<td>143 Microelectronic System Design</td>
<td></td>
</tr>
<tr>
<td>135 Server-side Web Applications</td>
<td>144 Computer-Aided Design of VLSI Circuits</td>
<td></td>
</tr>
<tr>
<td>141 Introduction to Computer Architecture</td>
<td>145 Embedded System Design Project</td>
<td></td>
</tr>
<tr>
<td>142 Introduction to Computer Vision</td>
<td>148 Advanced Processor Architecture Design Project</td>
<td></td>
</tr>
<tr>
<td>150 Intro to Artificial Intelligence: Search & Reasoning</td>
<td>151 Intro to Artificial Intelligence: Statistical Approaches</td>
<td></td>
</tr>
<tr>
<td>152 Introduction to Computer Vision</td>
<td>153 Cognitive Modeling</td>
<td></td>
</tr>
<tr>
<td>154 Introduction to Computer Architecture</td>
<td>143 Microelectronic System Design</td>
<td></td>
</tr>
<tr>
<td>164 GPU Programming</td>
<td>144 Computer-Aided Design of VLSI Circuits</td>
<td></td>
</tr>
<tr>
<td>165 3D User Interaction</td>
<td>145 Embedded System Design Project</td>
<td></td>
</tr>
<tr>
<td>166 Image Processing</td>
<td>148 Advanced Processor Architecture Design Project</td>
<td></td>
</tr>
<tr>
<td>167 Computer Graphics</td>
<td>150 Intro to Artificial Intelligence: Search & Reasoning</td>
<td></td>
</tr>
<tr>
<td>168 Computer Graphics II: Rendering</td>
<td>151 Intro to Artificial Intelligence: Statistical Approaches</td>
<td></td>
</tr>
<tr>
<td>169 Computer Animation</td>
<td>152 Introduction to Computer Vision</td>
<td></td>
</tr>
<tr>
<td>170 Introduction to Human-Computer Interaction Design</td>
<td>153 Cognitive Modeling</td>
<td></td>
</tr>
<tr>
<td>181 Molecular Sequence Analysis</td>
<td>154 Introduction to Computer Architecture</td>
<td></td>
</tr>
<tr>
<td>182 Biological Databases</td>
<td>143 Microelectronic System Design</td>
<td></td>
</tr>
<tr>
<td>184 Computational Molecular Biology</td>
<td>144 Computer-Aided Design of VLSI Circuits</td>
<td></td>
</tr>
<tr>
<td>190 Topics in Computer Science and Engineering</td>
<td>145 Embedded System Design Project</td>
<td></td>
</tr>
<tr>
<td>252B Vision II</td>
<td>148 Advanced Processor Architecture Design Project</td>
<td></td>
</tr>
</tbody>
</table>

Note: CSE 3, 4GS, 6GS, 5A, 7, 8A-B, 11,15L, 30, 42, 80, 86, 91, 123A, 140, 140L, 141L will not count as either professional or technical elective credit. The CSE Department strictly enforces prerequisites.

ECE Continued

171A-B Linear Control System Theory
172A Intro to Intelligent Systems: Robotics and Machines
174 Introduction to Linear and Nonlinear Optimization with Applications
175A Elements of Machine Intelligence: Pattern Recognition and Machine Learning
175B Elements of Machine Intelligence: Probabilistic Reasoning and Graphical Models
180 Topics in Electrical and Computer Engineering
180 Topics in ECE: Entrepreneurship counts for 1 Professional Elective only
181 Physical Optics and Fourier Optics
182 Electromagnetic Optics, Guided-Wave, & Fiber Optics
183 Optical Electronics
184 Optical Information Processing and Holography
185 Lasers & Modulators
187 Introduction to Biomedical Imaging and Sensing
188 Topics in ECE with Laboratory
190 Engineering Design
191 Engineering Group Design Project
193H Honors Project
202 Medical Devices and Interfaces
212AN Principles of Nanoscience and Nanotechnology
222C Applied Electromagnetic Theory – Computational Methods for Electromagnetics
230A Solid State Electronics I
240A Lasers and Optics
250 Random Processes
251A Digital Signal Processing I
253 Fundamentals of Digital Image Processing
260A VLSI Digital System Algorithms and Architectures
264B CMOS Analog Integrated Circuits and Systems II
265A Communication Circuit Design I
271A Statistical Learning I
289 Special Topics in Electrical & Computer Engineering

MATHMATICS (MATH)

100A Abstract Algebra
100B Abstract Algebra II
100C Abstract Algebra III
102 Applied Linear Algebra
103A Modern Algebra I
103B Modern Algebra II
104A Number Theory I
104B Number Theory II
104C Number Theory III
Mathematics continued

109 Mathematical Reasoning
110A Intro to Partial Differential Equations
110B Elements of Partial Differential & Integral Equations
111A Mathematical Modeling I
111B Mathematical Modeling II
120A Elements of Complex Analysis
120B Applied Complex Analysis
121A Foundations of Teaching and Learning Mathematics
121B Foundations of Teaching and Learning Math II
130A Ordinary Differential Equations I
130B Ordinary Differential Equations II
140A Foundations of Real Analysis I
140B Foundations of Real Analysis II
140C Foundations of Real Analysis III
142A Introduction to Analysis I
142B Introduction to Analysis II
150A Differential Geometry
150B Calculus on Manifolds
152 Applicable Mathematics and Computing
153 Geometry from Secondary Teachers
154 Discrete Mathematics and Graph Theory
155A Geometric Computer Graphics
160A Elementary Mathematical Logic I
160B Elementary Mathematical Logic II
168A Topics in Applied Mathematics – Computer Science
170A Introduction to Numerical Analysis: Linear Algebra
170B Introduction to Numerical Analysis: Approximation and Nonlinear Equations
170C Intro to Numerical Analysis: Ordinary Differential Equations
171A Intro to Numerical Optimization: Linear Programming
171B Intro to Numerical Optimization: Nonlinear Programming
174 Numerical Methods for Physical Modeling
175 Numerical Methods for Partial Differential Equations
179 Projects in Computational and Applied Mathematics
180C Introduction to Stochastic Processes II
181A Introduction to Mathematical Statistics I
181B Introduction to Mathematical Statistics II
181C Mathematical Statistics – Nonparametric Statistics
181E Mathematical Statistics – Time Series
184A Combinatorics
185 Introduction to Computational Statistics
187 Introduction to Cryptography
189 Exploratory Data Analysis and Inference
190 Introduction to Topology

MECHANICAL & AEROSPACE ENGINEERING (MAE)

101A Introductory Fluid Mechanics
101B Advanced Fluid Mechanics
101C Heat Transfer
104 Aerodynamics
107 Computational Methods in Engineering
110A Thermodynamics
110B Thermodynamic Systems
113 Fundamentals of Propulsion
117A Elementary Plasma Physics
118 Introduction to Energy Systems
119 Introduction to Renewable Energy: Solar and Wind
120 Introduction to Nuclear Energy
121 Air Pollution Transport and Dispersion Modeling
122 Flow and Transport in the Environment
123 Introduction to Transport in Porous Media
124 Environmental Challenges: Science and Solutions
126A Environmental Engineering Laboratory
126B Environmental Engineering Design
130A Mechanics I: Statistics
130B Mechanics II: Dynamics
130C Mechanics III: Vibrations
131A Solid Mechanics I
131B Fundamentals of Solid Mechanics II
131C Solid Mechanics III
132 Intermediate Dynamics
133 Finite Element Methods in MAE
142 Dynamics and Control of Aerospace Vehicles
143A Signals and Systems
143C Digital Control Systems
149 Sensor Networks
150 Computer-Aided Design
154 Product Design and Entrepreneurship
155A Aerospace Engineering Design
155B Aerospace Engineering Design II
156A Fundamental Principles of Mechanical Design I
156B Fundamental Principles of Mechanical Design II
160 Mechanical Behavior of Materials
165 Fatigue and Failure Analysis of Engineering Components
166 Nanomaterials
167 Wave Dynamics in Materials
168 MEMS Materials, Fabrication, and Applications
171A Mechanical Engineering Laboratory I
171B Mechanical Engineering Laboratory II
175A Aerospace Engineering Laboratory I
180A Spacecraft Guidance I
181 Space Mission Analysis and Design

NANOENGINEERING (NANO)

100L Physical Properties of Materials Lab
101 Introduction to Nanoengineering
102 Foundations in Nanoengineering: Chemical Principles
103 Foundations in Nanoengineering: Biochemical Principles
104 Foundations in Nanoengineering: Physical Principles
106 Crystallography of Solids
107 Electronic Devices and Circuits for Nanoelectroengineers
108 Materials Science and Engineering
110 Modeling of Nanoengineering Systems
111 Characterization of Nanoengineering Systems
112 Synthesis and Fabrication of NANO Systems
114 Probability and Statistical Methods for Engineers
120A Nanoelectromechanical System Design II
120B Nanoelectromechanical System Design I
134 Polymeric Materials
141A Engineering Mechanics I: Analysis of Equilibrium
143 Nanomedicine
146 Nanoscale Optical Microscopy and Spectroscopy
148 Thermodynamics of Materials
150 Mechanics of Nanomaterials
156 Nanomaterials
158 Phase Transformations and Kinetics
158L Materials Processing Laboratory
161 Material Selection in Engineering
164 Advanced Micro- and Nano-materials for Energy Storage and Conversion
168 Electrical, Dielectric, and Magnetic Properties of Engineering Materials
174 Mechanical Behavior of Materials
174L Mechanical Behavior Laboratory
247B BioElectronics

PHYSICS (PHYS)

100A Electromagnetism I
100B Electromagnetism II
100C Electromagnetism III
105A Mathematical and Computational Physics I
105B Mathematical and Computational Physics II
110A Mechanics I
110B Mechanics II
111 Introduction to Ocean Waves
120 Circuits and Electronics
122 Experimental Techniques
124 Laboratory Projects
130A Quantum Physics I
130B Quantum Physics II
130C Quantum Physics III
133 Condensed Matter/Materials Science Laboratory
137 String Theory
139 Physics Special Topics

Note: Lower division Math, Math 180A-B, 183, or 186 will not count as either professional or technical elective credit.
<table>
<thead>
<tr>
<th>elective credit</th>
<th></th>
</tr>
</thead>
</table>

Physics continued
140A Statistical and Thermal Physics I
140B Statistical and Thermal Physics II
141 Computational Physics I: Probabilistic Models and Simulations
142 Computational Physics II: PDE and Matrix Models
151 Elementary Plasma Physics
152A Condensed Matter Physics
152B Electronic Materials
154 Elementary Particle Physics
160 Stellar Astrophysics
161 Black Holes
162 Cosmology
163 Galaxies and Quasars
170 Medical Instruments: Principles and Practice
173 Modern Physics Lab: Biological and Quantum Physics
175 Fundamentals of Biological Physics
176 Quantitative Molecular Biology
177 Physics of the Cell
178 Biophysics of Neurons and Networks

Note: Lower division PHYS courses will not count as either professional or technical elective credit

STRUCTURAL ENGINEERING (SE)
101A Mechanics I: Statics
101B Mechanics II: Dynamics
101C Mechanics III: Vibrations
102 Numerical, Computational, and Graphical Tools for Structural Engineering I
103 Conceptual Structural Design
110A Solid Mechanics I
110B Solid Mechanics II
111A-B Steel Bridge Design Competition
112A-B Concrete Canoe Design Competition
115 Fluid Mechanics for Structural Engineering
120 Engineering Graphics & Computer Aided Structural Design
121 Computational and Graphical Tools for Structural Engineering II
125 Statistics, Probability and Reliability
130A-B Structural Analysis
131 Finite Element Analysis
140 Structures and Materials Laboratory
142 Design of Composite Structures
150 Design of Steel Structures
151A Design of Reinforced Concrete
151B Design of Prestressed Concrete
152 Seismic Design of Structures
154 Design of Timber Structures
160A Aerospace Structural Mechanics I
160B Aerospace Structural Mechanics II
163 Nondestructive Evaluation
165 Structural Health Monitoring
168 Structural System Testing and Model Correlation
171 Aerospace Structures Repair
180 Earthquake Engineering
181 Geotechnical Engineering
182 Foundation Engineering
184 Ground Improvement

Note: Lower division SE courses will not count as either professional or technical elective credit

SPECIAL STUDIES
197-199: At most, 4 units of 195-199 may be used for elective credit.
197: will count towards Professional Elective ONLY