Lecture 1.a Class Introduction

Prof. Hanh-Phuc Le

hanhphuc@ucsd.edu

http://ipower3es.ucsd.edu/

ECE 283 – Power Management Integrated Circuits (PMIC)

Hanh-Phuc Le Assistant Professor, UC San Diego

Ph.D. UC Berkeley, USA 2013

• M.S. KAIST, Korea 2006

• B.S. HUST, Hanoi, Vietnam 2003

Prior experience:

• University of Colorado Boulder 2016 – 2019

• Lion Semi., San Francisco, CA 2012 – 2015

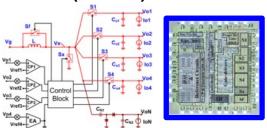
Rambus, Sunnyvale, CA 2012

Intel, Beaverton, OR 2009

• Oracle, Santa Clara, CA 2008

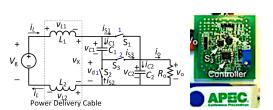
• JDA Tech., Korea 2004 – 2007

• VAST, Vietnam 2002 – 2004

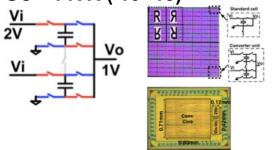


The Quest for iPower Circuits for All

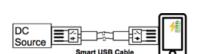
SIMO ('07-'09)



<u>in LG SH150A (3G)</u>

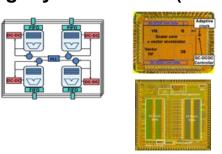

AMOLED Display Driver

Hybrid Co . ('13~)



SC - FIVR ('10-'13)

1st hi-perf. SC conv. 1W/mm², sub-ns response


Integrate w/ Env. ('17~)

material, smart architecture

Integ. Sys. and Func. ('14-'16)

1st processor core with SC ripple conv. iPower for brain implants

High-V, Large Conv. ('18~)

Class Logistics

All communications on Canvas

- Calendar
 - Zoom meeting link
- Media Gallery
 - · Class videos
- Files
 - Lecture slides
 - CAD Tools materials
 - Assignments
- Assignments and project reports
 - Online submission, PDF or PPT
- Discussions
- Grades

Log on remotely to campus servers to work on assignments and project

- You shall not copy/download any technology documents to your computer.
 - · You will sign an NDA on this.
- · Access will be given to you in one week.

Class Contents

- Learn power management design techniques in the integrated context
- DC-DC converter topologies and operations (2 weeks)
 - Linear regulator, switched-inductor, switched-capacitor, and hybrid converters
 - · Converter examples.
- Loss optimization and power switch sizing (1 week)
- Analog and digital building blocks for power management ICs (2-3 weeks)
 - Digital blocks: inverter, buffer, gate drivers, level shifter.
 - Analog blocks: Ramp and PWM generator, current mirror, amplifier, comparator, current sense, etc.
- Stability and compensation (1 week)
- Other topics:
 - Integrated devices introduction: integrated inductors, integrated capacitors
 - · Pad ring and ESD protections
 - Bandgap reference circuits
 - Design examples

Prerequisites

Expected prior knowledge from classes below or equivalent

- ECE 102 Introduction to Active Circuit Design (required)
- ECE 125A Introduction to Power Electronics I (highly recommended)
- ECE 164 Analog Integrated Circuit Design (recommended)
- ECE 165 Digital Integrated Circuit Design (Optional)

Familiarity with UNIX operating systems (CentOS/Redhat)

Search for getting started tutorials as necessary

Expectation of Class Organization

- · Instructor: creates an environment.
 - Provide background and practical design knowledge
 - Track student's learning process
 - Advise directions as well as detailed circuit designs

Students: take advantage of environment and setups

- Learn and innovate
- Read technical papers, recommended books, and discuss
- Not afraid of grades
- Give feedback
- Improve the environment for next generations.

Required Work and Grading

- Quiz (sometimes in-class): 10%
- ~4 Homework assignments: 25%
 - Homework are all building blocks of the project.
- Project: 65%
 - Preliminary and intermediate reports: 30%
 - Final review & report: 35%
- Term project has multiple phases, each has its own report/ presentation slide to submit.

Project Reports

Project group:

- 3 students per group.
- Teamwork
 - Specification definition: system level and block levels (team, possibly with a lead designer)
 - Sub-block assignment (parallel and individual)
 - Design integration (all team members)

Each group makes 3 oral presentation reports

- Preliminary design (in the week of Oct 25th)
- Intermediate design review (in the week of Nov 15th)
- Final design review (in the week of Nov 29th)

Final project report in PPT

Update the final design review PPT with final simulation results Dec 1st.

Class Policy

- Deadlines: beginning of lecture
 - 50% penalty after 3 days
 - Submission closed after 1 week
- Homework discussion is allowed and encouraged
 - But must submit unique individual design.
- Project sharing across teams
 - Discussions and helping each others are encouraged
 - No sharing of actual circuit design is allowed
 - · Possible collaboration is limited to sharing skill scripts or similar
- All students are bound by the <u>UCSD Academic Integrity</u>

Software

Cadence Virtuoso

- Increasingly popular in industry
- Lots of online tutorials and documentations

Start reading Cadence to prepare

Canvas >> Files >> CAD Tool - Cadence

Will have the first HW/lab on starting Cadence.

- Should be very simple with all the presets prepared.
 - Need to contact Prof. Le to resolve problems of software ASAP.