ECE 35 (sample)

Waiver Exam

PID: _____

- In the problem below, both the volt meter and the ammeter are ideal.
 - (a) What is the reading X of the ammeter?
 - (b) What is the reading Y of the volt meter?
 - (c) What is the power P_1 supplied by the current source?

- 2. Consider the circuit below. You must use mesh analysis.
 - (a) Find i_x .
 - (b) Find the node voltage v_x .

- 3. For *t* < 5 s, the switch is open, and you may assume the system has reached steady state. The switch closes at time *t* = 5 s.
 - (a) Find $i_a(5^- s)$.
 - (b) Find $i_a(t)$ for t > 5 s. Write the equation.

- 4. The AC circuit below is in steady state. The phasor diagram shows the phasor of i_S . It also shows the phasor $\mathbf{V_x}$, which is of one of the voltages v_1 , v_2 , or v_3 but you are not told which one. You are given that $\alpha = \frac{\pi}{3}$ and $|\mathbf{V_x}| = 8 \text{ V}$.
 - (a) Copy the phasor diagram with the given phasors and on that same diagram draw the phasors of $v_1,\,v_2,\,$ and $v_3.$
 - (b) What is the capacitor voltage v_2 at time $t={}^T/_3$ where T is the period of the AC current source i_S ?
 - (c) What is the amplitude of the voltage v_1 across the current source if the frequency of i_S is multiplied by 2 (everything else in the systems stays the same)?
 - (d) Sketch the waveform v_1 from part (c). The phase does not need to be exact.

