
In recent years, non-Hermitian degeneracies, also known as exceptional points (EPs), have emerged as a new paradigm for engineering the response of optical systems. At such points, an N-dimensional space can be represented by a single eigenvalue and a single eigenvector. As a result, these points are associated with abrupt phase transition in parameter space. Among many different non-conservative photonic configurations, parity-time (PT) symmetric systems are of particular interest since they provide a powerful platform to explore and consequently utilize the physics of exceptional points. In this talk, I will review some of our recent works in the area of non-Hermitian (mainly PT-symmetric) active photonics. For example, in a series of works, we have demonstrated how the generation and judicial utilization of these points in laser systems can result in unexpected dynamics, unusual linewidth behavior, and improved modal response1. On the other hand, biasing a photonic system at an exceptional point can lead to orders of magnitude enhancement in sensitivity- an effect that may enable a new generation of ultrasensitive optical sensors on chip2.
2 H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan, “Parity-time–symmetric microring lasers,” Science 346, 975 (2014)
2 H. Hodaei, A. U. Hassan, S. Wittek, J. H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan, “Enhanced sensitivity in photonic molecule systems using higher order non-Hermitian exceptional points,” Nature 548, 187 (2017)