Network Inference: from Passive to Active Learning
One of the paramount challenges of this century is that of understanding complex, dynamic, large-scale networks. Such high-dimensional networks, including social, financial, and biological networks, cover the planet and dominate modern life. In this talk, we propose novel approaches to inference in such networks, for both active (interventional) and passive (observational) learning scenarios. We highlight how timing could be utilized as a degree of freedom that provides rich information about the dynamics.